metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[*N*,*N*-Bis(2-pyridylmethyl)glycinato- $\kappa^4 N, N', N'', O$]dichloridoiron(III)–[*N*,*N*-bis(2-pyridylmethyl)glycine- $\kappa^4 N, N', N'', O$]dichloridozinc(II) (1/1)

Anne Nielsen, Christine J. McKenzie and Andrew D. Bond*

University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense M, Denmark Correspondence e-mail: adb@chem.sdu.dk

Received 25 November 2009; accepted 26 November 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.053; wR factor = 0.132; data-to-parameter ratio = 24.0.

The title compound, $[Fe(C_{14}H_{14}N_3O_2)Cl_2]\cdot[ZnCl_2(C_{14}H_{15}N_3O_2)]$, is formulated as $[Fe^{III}(bpg)Cl_2][Zn^{II}Cl_2(bpgH)]$, where bpg is the tetradentate ligand *N*,*N*-bis(2-pyridylmethyl)glycine. The structure contains one crystallographically distinct complex with Fe^{III} and Zn^{II} atoms present in a 50:50 ratio in a single-atom site. The non-coordinated O atoms of the carboxyl groups of bpg meet across crystallographic inversion centres, forming O-H···O hydrogen bonds that include only one H atom per two complexes, consistent with the 1:1 disorder of Fe^{III} and Zn^{II}.

Related literature

For related Fe^{III} structures of bpg, see: Mortensen *et al.* (2004). For details of the synthesis, see: Suzuki *et al.* (1988).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Fe}(\mathrm{C}_{14}\mathrm{H}_{14}\mathrm{N}_{3}\mathrm{O}_{2})\mathrm{Cl}_{2}]\text{-}& \beta = 91.737~(2)^{\circ}\\ [\mathrm{Zn}\mathrm{Cl}_{2}(\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{2})] & V = 1566.97~(9)~\text{\AA}^{3}\\ M_{r} = 776.59 & Z = 2\\ \mathrm{Monoclinic}, P2_{1}/c & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation}\\ a = 8.8710~(3)~\mathrm{\AA} & \mu = 1.62~\mathrm{mm}^{-1}\\ b = 13.1898~(5)~\mathrm{\AA} & T = 180~\mathrm{K}\\ c = 13.3983~(4)~\mathrm{\AA} & 0.20~\times~0.20~\times~0.15~\mathrm{mm} \end{array}$

Data collection

 $\begin{array}{l} \mbox{Bruker-Nonius X8APEXII CCD} \\ \mbox{diffractometer} \\ \mbox{Absorption correction: multi-scan} \\ \mbox{(SADABS; Sheldrick, 2003)} \\ \mbox{T}_{min} = 0.701, \mbox{T}_{max} = 0.794 \end{array}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	199 parameters
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 1.36	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
4775 reflections	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

32580 measured reflections

 $R_{\rm int} = 0.031$

4775 independent reflections

4248 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O2-H2\cdots O2^i$ 0.931.642.559 (6)169

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2118).

References

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mortensen, M. N., Jensen, B., Hazell, A., Bond, A. D. & McKenzie, C. J. (2004). *Dalton Trans.* pp. 3396–3402.
- Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suzuki, M., Senda, H., Kobayashi, Y., Oshio, H. & Uehara, A. (1988). Chem. Lett. pp. 1763–1766.

Acta Cryst. (2009). E65, m1706 [doi:10.1107/S1600536809051022]

$[N,N-Bis(2-pyridylmethyl)glycinato-\kappa^4 N,N',N'',O]dichloridoiron(III)-[N,N-bis(2-pyridylmethyl)glycine-\kappa^4 N,N',N'',O]dichloridozinc(II) (1/1)$

A. Nielsen, C. J. McKenzie and A. D. Bond

Comment

Crystallization of the title compound, $[FeCl_2(bpg)][ZnCl_2(bpgH)]$ (where bpg denotes the tetradentate ligand *N*,*N*-bis(2-pyridylmethyl)glycine), was surprising given the presence of water in its preparation. In our hands, simple binary mixtures of bpgH and FeCl₃ in water-containing solutions do not yield the complex $[FeCl_2(bpg)]$. If only chloride ions but not Zn^{II} are present in equivalent reaction mixtures (*i.e.* aerobic conditions and containing water), oligomeric (hydr)oxo-bridged Fe^{III} complexes are formed, such as $[Fe_2(O)(bpg)_2(H_2O)_2](ClO_4)_2$ and $[Fe_3(O)_2(OH)(bpg)_3](ClO_4)$ (Mortensen *et al.*, 2004). Addition of Zn^{II} has in this case enabled isolation of $[FeCl_2(bpg)]$ from water as one component of the co-crystal.

Experimental

N,N-Bis(2-pyridylmethyl)glycine (bpgH) was prepared according to a literature method (Suzuki *et al.*, 1988). BpgH (125 mg, 49 mmol) was then dissolved in hot acetonitrile (5 ml) and water (0.5 ml), before Fe(NO₃)₃.9H₂O (99 mg, 24 mmol), ZnCl₂ (67 mg, 49 mmol) and NH₄Cl (78 mg, 15 mmol) were added. A few yellow crystals of the title compound were deposited overnight.

Refinement

H atoms bound to C atoms were placed in idealized positions with C—H = 0.95 or 0.99 Å and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom of the OH group was included in a position identified from a difference Fourier map, then allowed to ride on atom O2 with $U_{iso}(H) = 1.5U_{eq}(O)$. The 50:50 disorder of atoms Fe1 and Zn1 is required for charge balance in the structure, but it is also supported by the diffraction data: refinement of the atom solely as Fe gives a comparatively small displacement ellipsoid while refinement solely as Zn gives a comparatively large ellipsoid. In both cases, the *R*-factors increase compared to the disordered refinement.

Figures

Fig. 1. Molecular structure with displacement ellipsoids shown at 50% probability for non-H atoms.

Fig. 2. Projection along the *a* axis showing hydrogen bonds (dashed lines) formed between bpg(H) ligands across crystallographic inversion centres.

 $[N,N-Bis(2-pyridylmethyl)glycinato- \kappa^4 N, N', N'', O]dichloridoiron(III)- [N,N-bis(2-pyridylmethyl)glycine- \kappa^4 N, N', N'', O]dichloridozinc(II) (1/1)$

Crystal data

$[Fe(C_{14}H_{14}N_3O_2)Cl_2] \cdot [ZnCl_2(C_{14}H_{15}N_3O_2)]$	F(000) = 790
$M_r = 776.59$	$D_{\rm x} = 1.646 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5945 reflections
a = 8.8710 (3) Å	$\theta = 2.3 - 29.9^{\circ}$
b = 13.1898 (5) Å	$\mu = 1.62 \text{ mm}^{-1}$
c = 13.3983 (4) Å	T = 180 K
$\beta = 91.737 \ (2)^{\circ}$	Block, yellow
$V = 1566.97 (9) \text{ Å}^3$	$0.20\times0.20\times0.15~mm$
Z = 2	

Data collection

Bruker–Nonius X8APEXII CCD diffractometer	4775 independent reflections
Radiation source: fine-focus sealed tube	4248 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.031$
Thin–slice ω and ϕ scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -12 \rightarrow 12$
$T_{\min} = 0.701, \ T_{\max} = 0.794$	$k = -18 \rightarrow 18$
32580 measured reflections	$l = -19 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.132$	H-atom parameters constrained
<i>S</i> = 1.36	$w = 1/[\sigma^{2}(F_{o}^{2}) + 7.0062P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4775 reflections	$(\Delta/\sigma)_{max} < 0.001$
199 parameters	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Fe1	0.30263 (5)	0.42993 (3)	0.31348 (3)	0.01709 (11)	0.50
Zn1	0.30263 (5)	0.42993 (3)	0.31348 (3)	0.01709 (11)	0.50
Cl1	0.19027 (10)	0.35846 (7)	0.45311 (7)	0.02319 (19)	
Cl2	0.30370 (13)	0.59544 (7)	0.35454 (8)	0.0290 (2)	
01	0.3982 (4)	0.4689 (2)	0.1686 (2)	0.0295 (6)	
O2	0.4679 (4)	0.4082 (2)	0.0219 (2)	0.0326 (7)	
H2	0.4790	0.4759	0.0050	0.049*	0.50
N1	0.5237 (4)	0.3803 (2)	0.3539 (2)	0.0204 (6)	
N2	0.3235 (3)	0.2778 (2)	0.2375 (2)	0.0171 (6)	
N3	0.0989 (4)	0.4170 (3)	0.2225 (2)	0.0215 (6)	
C1	0.6376 (4)	0.4414 (3)	0.3838 (3)	0.0245 (8)	
H1A	0.6184	0.5117	0.3927	0.029*	

C2	0.7825 (5)	0.4048 (4)	0.4022 (3)	0.0291 (9)
H2A	0.8617	0.4493	0.4228	0.035*
C3	0.8095 (5)	0.3026 (4)	0.3899 (3)	0.0320 (10)
H3A	0.9081	0.2759	0.4010	0.038*
C4	0.6917 (5)	0.2392 (3)	0.3615 (3)	0.0280 (8)
H4A	0.7076	0.1684	0.3548	0.034*
C5	0.5506 (4)	0.2805 (3)	0.3429 (3)	0.0208 (7)
C6	0.4167 (4)	0.2175 (3)	0.3096 (3)	0.0202 (7)
H6A	0.4512	0.1543	0.2775	0.024*
H6B	0.3564	0.1989	0.3678	0.024*
C7	0.1677 (4)	0.2401 (3)	0.2253 (3)	0.0215 (7)
H7A	0.1323	0.2150	0.2901	0.026*
H7B	0.1647	0.1829	0.1774	0.026*
C8	0.0656 (4)	0.3237 (3)	0.1875 (3)	0.0230 (7)
C9	-0.0583 (5)	0.3063 (4)	0.1241 (3)	0.0340 (10)
H9A	-0.0797	0.2399	0.1001	0.041*
C10	-0.1499 (6)	0.3865 (5)	0.0964 (4)	0.0445 (13)
H10A	-0.2355	0.3759	0.0534	0.053*
C11	-0.1162 (6)	0.4821 (4)	0.1318 (4)	0.0465 (14)
H11A	-0.1784	0.5382	0.1137	0.056*
C12	0.0097 (5)	0.4952 (4)	0.1942 (4)	0.0336 (10)
H12A	0.0338	0.5613	0.2178	0.040*
C13	0.3965 (4)	0.2893 (3)	0.1407 (3)	0.0198 (7)
H13A	0.3337	0.2553	0.0883	0.024*
H13B	0.4956	0.2548	0.1442	0.024*
C14	0.4195 (4)	0.3982 (3)	0.1113 (3)	0.0190 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0191 (2)	0.0150 (2)	0.0172 (2)	-0.00111 (17)	0.00049 (15)	0.00011 (17)
Zn1	0.0191 (2)	0.0150 (2)	0.0172 (2)	-0.00111 (17)	0.00049 (15)	0.00011 (17)
Cl1	0.0217 (4)	0.0273 (5)	0.0207 (4)	-0.0020 (3)	0.0013 (3)	0.0032 (3)
Cl2	0.0400 (6)	0.0201 (4)	0.0272 (5)	0.0007 (4)	0.0063 (4)	-0.0067 (4)
01	0.0351 (16)	0.0169 (13)	0.0363 (17)	0.0000 (12)	0.0006 (13)	-0.0069 (12)
O2	0.0476 (19)	0.0233 (15)	0.0271 (15)	-0.0051 (13)	0.0057 (13)	0.0043 (12)
N1	0.0204 (15)	0.0210 (15)	0.0196 (14)	-0.0020 (12)	-0.0012 (11)	-0.0008 (12)
N2	0.0173 (14)	0.0162 (14)	0.0178 (13)	-0.0016 (11)	-0.0002 (11)	0.0006 (11)
N3	0.0205 (15)	0.0223 (16)	0.0216 (15)	0.0013 (12)	-0.0015 (12)	-0.0004 (12)
C1	0.0231 (18)	0.0261 (19)	0.0243 (18)	-0.0055 (15)	0.0003 (14)	-0.0037 (15)
C2	0.0209 (18)	0.041 (2)	0.0253 (19)	-0.0060 (17)	-0.0018 (15)	-0.0064 (17)
C3	0.0211 (19)	0.047 (3)	0.028 (2)	0.0080 (18)	-0.0049 (15)	-0.0064 (19)
C4	0.026 (2)	0.031 (2)	0.0268 (19)	0.0081 (16)	-0.0041 (15)	-0.0039 (16)
C5	0.0213 (17)	0.0243 (18)	0.0166 (15)	0.0013 (14)	-0.0013 (13)	-0.0016 (13)
C6	0.0226 (17)	0.0161 (16)	0.0218 (17)	0.0015 (13)	-0.0010 (13)	0.0005 (13)
C7	0.0208 (17)	0.0186 (17)	0.0249 (17)	-0.0041 (14)	-0.0034 (13)	-0.0010 (14)
C8	0.0193 (17)	0.0273 (19)	0.0223 (17)	-0.0033 (15)	-0.0014 (13)	-0.0025 (15)
C9	0.027 (2)	0.040 (3)	0.034 (2)	-0.0024 (18)	-0.0101 (17)	-0.0074 (19)

C10	0.030 (2)	0.057 (3)	0.045 (3)	0.010 (2)	-0.018 (2)	-0.011 (2)
C11	0.036 (3)	0.051 (3)	0.052 (3)	0.022 (2)	-0.020 (2)	-0.011 (2)
C12	0.031 (2)	0.029 (2)	0.041 (3)	0.0087 (18)	-0.0066 (18)	-0.0021 (19)
C13	0.0267 (18)	0.0161 (16)	0.0168 (15)	0.0002 (13)	0.0028 (13)	0.0007 (12)
C14	0.0204 (16)	0.0185 (16)	0.0179 (16)	0.0000 (13)	-0.0005 (13)	-0.0019 (13)
Geometric param	neters (Å, °)					
Fe1—N1		2.122 (3)	С3—Н3	BA	0.950	
Fe1—N3		2.156 (3)	C4—C5	5	1.381	(5)
Fe1—O1		2.202 (3)	C4—H4	łA	0.950	
Fe1—Cl2		2.2512 (11)	С5—С6)	1.506	(5)
Fe1—N2		2.260 (3)	C6—H6	δA	0.990	
Fe1—Cl1		2.3441 (10)	C6—H6	бB	0.990	
O1—C14		1.226 (5)	C7—C8	3	1.505	(5)
O2—C14		1.291 (5)	С7—Н7	7A	0.990	
O2—H2		0.927	С7—Н7	7B	0.990	
N1—C1		1.345 (5)	C8—C9)	1.387	(5)
N1—C5		1.346 (5)	C9—C1	0	1.378	(7)
N2—C7		1.473 (5)	С9—Н9	0A	0.950	
N2—C13		1.475 (5)	C10—C	211	1.377	(8)
N2—C6		1.483 (5)	C10—H	[10A	0.950	
N3—C8		1.347 (5)	C11—C	212	1.386	(6)
N3—C12		1.348 (5)	CII—E		0.950	
C1—C2		1.388 (6)	C12—F	112A	0.950	(5)
CI—HIA		0.950	C13—C	214	1.504	(5)
C2—C3		1.381 (7)	C13—H	113A	0.990	
C2—H2A		0.950	C13—F	II3B	0.990	
C3—C4		1.382 (6)				
N1—Fe1—N3		150.70 (12)	C3—C4	H4A	120.5	
N1—Fe1—O1		85.37 (12)	N1—C3	5—C4	121.9	(4)
N3—Fe1—O1		81.87 (12)	N1—C3	5—С6	115.5	(3)
NI—FeI—Cl2		103.88 (9)	C4—C5	—C6	122.6	(4)
N3—Fe1—Cl2		102.26 (9)	N2—Ce	6—C5	108.4	(3)
OI—FeI—Cl2		89.45 (8)	N2—C6	H6A	110.0	
N1 - Fe1 - N2		/5./1 (11)	USCe	H6A	110.0	
N3—FeI— $N2$		75.74 (12)	N2—C6	H0B	110.0	
OI = FeI = N2		/0.//(11) 1((22 (8)			110.0	
C_{12} —FeI—N2		100.22(8)	HOA—(_0—Н0В	108.4	(2)
N1 - Fe1 - CI1		94.84 (9)	N2	и—Со 7 Ц7А	100.6	(3)
N3—FeI—CII		92.80 (9) 168.08 (8)	$N_2 = C_1$	и н7 л	109.0	
C12—Fe1—C11		103.98(8) 101.17(4)	N2_C	—H7R 7—H7B	109.6	
$N2$ _Fe1_C11		92 57 (8)	N2-C	—H7В	109.0	
C14 - 01 - Fe1		116 5 (3)	H7A_(7—H7B	109.0	
С14—02—Н2		111.5	N3	3-09	100.2	(4)
C1 - N1 - C5		119.0 (3)	N3—C5	3—C7	115.4	(3)
C1-N1-Fe1		124 9 (3)	C9—C8	S—C7	122.4	(4)
C5—N1—Fe1		116.1 (2)	C10—C	C9—C8	119.2	(4)
		× /				× /

C7—N2—C13	111.8 (3)	С10—С9—Н9А	120.4
C7—N2—C6	113.2 (3)	C8—C9—H9A	120.4
C13—N2—C6	112.1 (3)	C11—C10—C9	119.4 (4)
C7— $N2$ —Fe1	105 1 (2)	C11—C10—H10A	120.3
C13—N2—Fe1	110 4 (2)	C9—C10—H10A	120.3
C6-N2-Fe1	103.6 (2)	C10-C11-C12	119.0 (5)
C8 = N3 = C12	1187(4)	C10-C11-H11A	120.5
C8—N3—Fe1	116.2 (3)	C12—C11—H11A	120.5
C12—N3—Fe1	125.0 (3)	N3-C12-C11	120.0 (5)
N1 - C1 - C2	121.9 (4)	N3-C12-H12A	119.0
N1 - C1 - H1A	119.1	C11 - C12 - H12A	119.0
C^2 — C^1 — H^1A	119.1	N_{2} C13 C14	113 3 (3)
C_{2}^{-} C_{1}^{-} C_{1}^{-}	118.8 (4)	N2H13_	108.9
$C_3 = C_2 = H_2 \Delta$	120.6	C_{14} C_{13} H_{13A}	108.9
$C_1 = C_2 = H_2 A$	120.6	N2_C13_H13B	108.9
$C_1 C_2 I_1 Z_1 C_2$	110 A (A)	C_{14} C_{13} H_{13B}	108.9
$C_2 = C_3 = C_4$	119.4 (4)	H13A C13 H13B	107.7
$C_2 = C_3 = H_3 \Lambda$	120.3	01 C14 02	107.7 124.4(4)
$C_4 = C_5 = C_4 = C_2^2$	120.5	01 - 014 - 02	124.4(4) 122.5(2)
$C_5 = C_4 = C_5$	119.0 (4)	01 - 014 - 013	122.3(3)
C5-C4	120.5	02-014-015	115.1 (5)
N1—Fe1—O1—C14	77.2 (3)	C5—N1—C1—C2	1.1 (6)
N3—Fe1—O1—C14	-76.3 (3)	Fel—N1—C1—C2	-175.2 (3)
Cl2—Fe1—O1—C14	-178.8 (3)	N1—C1—C2—C3	-0.5 (6)
N2—Fe1—O1—C14	0.8 (3)	C1—C2—C3—C4	-1.0 (7)
Cl1—Fe1—O1—C14	-14.3 (7)	C2—C3—C4—C5	2.0 (6)
N3—Fe1—N1—C1	144.7 (3)	C1—N1—C5—C4	-0.1 (6)
01—Fe1—N1—C1	80.4 (3)	Fe1—N1—C5—C4	176.5 (3)
Cl2—Fe1—N1—C1	-7.9 (3)	C1—N1—C5—C6	179.8 (3)
N2—Fe1—N1—C1	157.9 (3)	Fe1—N1—C5—C6	-3.7 (4)
Cl1—Fe1—N1—C1	-110.7 (3)	C3—C4—C5—N1	-1.5 (6)
N3—Fe1—N1—C5	-31.7 (4)	C3—C4—C5—C6	178.7 (4)
01—Fe1—N1—C5	-96.0 (3)	C7—N2—C6—C5	-160.8 (3)
Cl2—Fe1—N1—C5	175.7 (3)	C13—N2—C6—C5	71.5 (4)
N2—Fe1—N1—C5	-18.5 (3)	Fe1—N2—C6—C5	-47.5 (3)
Cl1—Fe1—N1—C5	73.0 (3)	N1—C5—C6—N2	36.7 (4)
N1—Fe1—N2—C7	154.6 (2)	C4—C5—C6—N2	-143.5 (4)
N3—Fe1—N2—C7	-32.0 (2)	C13—N2—C7—C8	-75.2 (4)
O1—Fe1—N2—C7	-116.9 (2)	C6—N2—C7—C8	157.0 (3)
Cl2—Fe1—N2—C7	-115.3 (4)	Fe1—N2—C7—C8	44.6 (3)
Cl1—Fe1—N2—C7	60.3 (2)	C12—N3—C8—C9	-0.5 (6)
N1—Fe1—N2—C13	-84.6 (2)	Fe1—N3—C8—C9	-176.8 (3)
N3—Fe1—N2—C13	88.7 (2)	C12—N3—C8—C7	-178.1 (4)
O1—Fe1—N2—C13	3.9 (2)	Fe1—N3—C8—C7	5.6 (4)
Cl2—Fe1—N2—C13	5.4 (5)	N2C7C8N3	-35.6 (5)
Cl1—Fe1—N2—C13	-179.0 (2)	N2—C7—C8—C9	146.9 (4)
N1—Fe1—N2—C6	35.6 (2)	N3—C8—C9—C10	-0.2 (7)
N3—Fe1—N2—C6	-151.1 (2)	C7—C8—C9—C10	177.2 (4)
O1—Fe1—N2—C6	124.1 (2)	C8—C9—C10—C11	0.3 (8)
Cl2—Fe1—N2—C6	125.6 (3)	C9—C10—C11—C12	0.2 (9)

Cl1—Fe1—N2—C6	-58.8 (2)	C8—N3—C12—C11	1.1 (7)
N1—Fe1—N3—C8	28.4 (4)	Fe1-N3-C12-C11	177.0 (4)
O1—Fe1—N3—C8	93.5 (3)	C10-C11-C12-N3	-1.0 (9)
Cl2—Fe1—N3—C8	-178.8 (3)	C7—N2—C13—C14	109.1 (3)
N2—Fe1—N3—C8	15.2 (3)	C6—N2—C13—C14	-122.4 (3)
Cl1—Fe1—N3—C8	-76.7 (3)	Fe1-N2-C13-C14	-7.5 (4)
N1—Fe1—N3—C12	-147.6 (3)	Fe1-01-C14-02	176.6 (3)
O1—Fe1—N3—C12	-82.5 (4)	Fe1-01-C14-C13	-5.8 (5)
Cl2—Fe1—N3—C12	5.2 (4)	N2-C13-C14-O1	9.3 (5)
N2—Fe1—N3—C12	-160.8 (4)	N2-C13-C14-O2	-172.8 (3)
Cl1—Fe1—N3—C12	107.3 (4)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O2—H2···O2 ⁱ	0.93	1.64	2.559 (6)	169.
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 1

